The Lissajous polynomials are the implicit (variety) descriptions of the image of the parametric map x = cos(m t + p), y = sin(n t + q).
lissajous(m, n, p, q, digits = 3)
m, n, p, q | Trigonometric coefficients, see examples for description |
---|---|
digits | The number of digits to round coefficients to, see
|
a mpoly object
chebyshev()
, Merino, J. C (2003). Lissajous figures and Chebyshev
polynomials. The College Mathematics Journal, 34(2), pp. 122-127.
lissajous(3, 2, -pi/2, 0)#> -4 x^2 + 4 x^4 + 9 y^2 - 24 y^4 + 16 y^6lissajous(4, 3, -pi/2, 0)#> 9 x^2 - 24 x^4 + 16 x^6 - 16 y^2 + 80 y^4 - 128 y^6 + 64 y^8