Determine all r-vectors with nonnegative integer entries summing to n. Note that this is not intended to be optimized.
burst(n, r = n)
n | integer to sum to |
---|---|
r | number of components |
a matrix whose rows are the n-tuples
burst(4)#> [,1] [,2] [,3] [,4] #> [1,] 0 0 0 4 #> [2,] 0 0 4 0 #> [3,] 0 4 0 0 #> [4,] 4 0 0 0 #> [5,] 0 0 1 3 #> [6,] 0 0 3 1 #> [7,] 0 1 0 3 #> [8,] 0 1 3 0 #> [9,] 0 3 0 1 #> [10,] 0 3 1 0 #> [11,] 1 0 0 3 #> [12,] 1 0 3 0 #> [13,] 1 3 0 0 #> [14,] 3 0 0 1 #> [15,] 3 0 1 0 #> [16,] 3 1 0 0 #> [17,] 0 0 2 2 #> [18,] 0 2 0 2 #> [19,] 0 2 2 0 #> [20,] 2 0 0 2 #> [21,] 2 0 2 0 #> [22,] 2 2 0 0 #> [23,] 0 1 1 2 #> [24,] 0 1 2 1 #> [25,] 0 2 1 1 #> [26,] 1 0 1 2 #> [27,] 1 0 2 1 #> [28,] 1 1 0 2 #> [29,] 1 1 2 0 #> [30,] 1 2 0 1 #> [31,] 1 2 1 0 #> [32,] 2 0 1 1 #> [33,] 2 1 0 1 #> [34,] 2 1 1 0 #> [35,] 1 1 1 1burst(4, 4)#> [,1] [,2] [,3] [,4] #> [1,] 0 0 0 4 #> [2,] 0 0 4 0 #> [3,] 0 4 0 0 #> [4,] 4 0 0 0 #> [5,] 0 0 1 3 #> [6,] 0 0 3 1 #> [7,] 0 1 0 3 #> [8,] 0 1 3 0 #> [9,] 0 3 0 1 #> [10,] 0 3 1 0 #> [11,] 1 0 0 3 #> [12,] 1 0 3 0 #> [13,] 1 3 0 0 #> [14,] 3 0 0 1 #> [15,] 3 0 1 0 #> [16,] 3 1 0 0 #> [17,] 0 0 2 2 #> [18,] 0 2 0 2 #> [19,] 0 2 2 0 #> [20,] 2 0 0 2 #> [21,] 2 0 2 0 #> [22,] 2 2 0 0 #> [23,] 0 1 1 2 #> [24,] 0 1 2 1 #> [25,] 0 2 1 1 #> [26,] 1 0 1 2 #> [27,] 1 0 2 1 #> [28,] 1 1 0 2 #> [29,] 1 1 2 0 #> [30,] 1 2 0 1 #> [31,] 1 2 1 0 #> [32,] 2 0 1 1 #> [33,] 2 1 0 1 #> [34,] 2 1 1 0 #> [35,] 1 1 1 1burst(4, 3)#> [,1] [,2] [,3] #> [1,] 0 0 4 #> [2,] 0 4 0 #> [3,] 4 0 0 #> [4,] 0 1 3 #> [5,] 0 3 1 #> [6,] 1 0 3 #> [7,] 1 3 0 #> [8,] 3 0 1 #> [9,] 3 1 0 #> [10,] 0 2 2 #> [11,] 2 0 2 #> [12,] 2 2 0 #> [13,] 1 1 2 #> [14,] 1 2 1 #> [15,] 2 1 1burst(4, 2)#> [,1] [,2] #> [1,] 0 4 #> [2,] 4 0 #> [3,] 1 3 #> [4,] 3 1 #> [5,] 2 2#> [1] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4#> [1] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4#> [1] 4 4 4 4 4burst(10, 4) # all possible 2x2 contingency tables with n=10#> [,1] [,2] [,3] [,4] #> [1,] 0 0 0 10 #> [2,] 0 0 10 0 #> [3,] 0 10 0 0 #> [4,] 10 0 0 0 #> [5,] 0 0 1 9 #> [6,] 0 0 9 1 #> [7,] 0 1 0 9 #> [8,] 0 1 9 0 #> [9,] 0 9 0 1 #> [10,] 0 9 1 0 #> [11,] 1 0 0 9 #> [12,] 1 0 9 0 #> [13,] 1 9 0 0 #> [14,] 9 0 0 1 #> [15,] 9 0 1 0 #> [16,] 9 1 0 0 #> [17,] 0 0 2 8 #> [18,] 0 0 8 2 #> [19,] 0 2 0 8 #> [20,] 0 2 8 0 #> [21,] 0 8 0 2 #> [22,] 0 8 2 0 #> [23,] 2 0 0 8 #> [24,] 2 0 8 0 #> [25,] 2 8 0 0 #> [26,] 8 0 0 2 #> [27,] 8 0 2 0 #> [28,] 8 2 0 0 #> [29,] 0 1 1 8 #> [30,] 0 1 8 1 #> [31,] 0 8 1 1 #> [32,] 1 0 1 8 #> [33,] 1 0 8 1 #> [34,] 1 1 0 8 #> [35,] 1 1 8 0 #> [36,] 1 8 0 1 #> [37,] 1 8 1 0 #> [38,] 8 0 1 1 #> [39,] 8 1 0 1 #> [40,] 8 1 1 0 #> [41,] 0 0 3 7 #> [42,] 0 0 7 3 #> [43,] 0 3 0 7 #> [44,] 0 3 7 0 #> [45,] 0 7 0 3 #> [46,] 0 7 3 0 #> [47,] 3 0 0 7 #> [48,] 3 0 7 0 #> [49,] 3 7 0 0 #> [50,] 7 0 0 3 #> [51,] 7 0 3 0 #> [52,] 7 3 0 0 #> [53,] 0 1 2 7 #> [54,] 0 1 7 2 #> [55,] 0 2 1 7 #> [56,] 0 2 7 1 #> [57,] 0 7 1 2 #> [58,] 0 7 2 1 #> [59,] 1 0 2 7 #> [60,] 1 0 7 2 #> [61,] 1 2 0 7 #> [62,] 1 2 7 0 #> [63,] 1 7 0 2 #> [64,] 1 7 2 0 #> [65,] 2 0 1 7 #> [66,] 2 0 7 1 #> [67,] 2 1 0 7 #> [68,] 2 1 7 0 #> [69,] 2 7 0 1 #> [70,] 2 7 1 0 #> [71,] 7 0 1 2 #> [72,] 7 0 2 1 #> [73,] 7 1 0 2 #> [74,] 7 1 2 0 #> [75,] 7 2 0 1 #> [76,] 7 2 1 0 #> [77,] 1 1 1 7 #> [78,] 1 1 7 1 #> [79,] 1 7 1 1 #> [80,] 7 1 1 1 #> [81,] 0 0 4 6 #> [82,] 0 0 6 4 #> [83,] 0 4 0 6 #> [84,] 0 4 6 0 #> [85,] 0 6 0 4 #> [86,] 0 6 4 0 #> [87,] 4 0 0 6 #> [88,] 4 0 6 0 #> [89,] 4 6 0 0 #> [90,] 6 0 0 4 #> [91,] 6 0 4 0 #> [92,] 6 4 0 0 #> [93,] 0 1 3 6 #> [94,] 0 1 6 3 #> [95,] 0 3 1 6 #> [96,] 0 3 6 1 #> [97,] 0 6 1 3 #> [98,] 0 6 3 1 #> [99,] 1 0 3 6 #> [100,] 1 0 6 3 #> [101,] 1 3 0 6 #> [102,] 1 3 6 0 #> [103,] 1 6 0 3 #> [104,] 1 6 3 0 #> [105,] 3 0 1 6 #> [106,] 3 0 6 1 #> [107,] 3 1 0 6 #> [108,] 3 1 6 0 #> [109,] 3 6 0 1 #> [110,] 3 6 1 0 #> [111,] 6 0 1 3 #> [112,] 6 0 3 1 #> [113,] 6 1 0 3 #> [114,] 6 1 3 0 #> [115,] 6 3 0 1 #> [116,] 6 3 1 0 #> [117,] 0 2 2 6 #> [118,] 0 2 6 2 #> [119,] 0 6 2 2 #> [120,] 2 0 2 6 #> [121,] 2 0 6 2 #> [122,] 2 2 0 6 #> [123,] 2 2 6 0 #> [124,] 2 6 0 2 #> [125,] 2 6 2 0 #> [126,] 6 0 2 2 #> [127,] 6 2 0 2 #> [128,] 6 2 2 0 #> [129,] 1 1 2 6 #> [130,] 1 1 6 2 #> [131,] 1 2 1 6 #> [132,] 1 2 6 1 #> [133,] 1 6 1 2 #> [134,] 1 6 2 1 #> [135,] 2 1 1 6 #> [136,] 2 1 6 1 #> [137,] 2 6 1 1 #> [138,] 6 1 1 2 #> [139,] 6 1 2 1 #> [140,] 6 2 1 1 #> [141,] 0 0 5 5 #> [142,] 0 5 0 5 #> [143,] 0 5 5 0 #> [144,] 5 0 0 5 #> [145,] 5 0 5 0 #> [146,] 5 5 0 0 #> [147,] 0 1 4 5 #> [148,] 0 1 5 4 #> [149,] 0 4 1 5 #> [150,] 0 4 5 1 #> [151,] 0 5 1 4 #> [152,] 0 5 4 1 #> [153,] 1 0 4 5 #> [154,] 1 0 5 4 #> [155,] 1 4 0 5 #> [156,] 1 4 5 0 #> [157,] 1 5 0 4 #> [158,] 1 5 4 0 #> [159,] 4 0 1 5 #> [160,] 4 0 5 1 #> [161,] 4 1 0 5 #> [162,] 4 1 5 0 #> [163,] 4 5 0 1 #> [164,] 4 5 1 0 #> [165,] 5 0 1 4 #> [166,] 5 0 4 1 #> [167,] 5 1 0 4 #> [168,] 5 1 4 0 #> [169,] 5 4 0 1 #> [170,] 5 4 1 0 #> [171,] 0 2 3 5 #> [172,] 0 2 5 3 #> [173,] 0 3 2 5 #> [174,] 0 3 5 2 #> [175,] 0 5 2 3 #> [176,] 0 5 3 2 #> [177,] 2 0 3 5 #> [178,] 2 0 5 3 #> [179,] 2 3 0 5 #> [180,] 2 3 5 0 #> [181,] 2 5 0 3 #> [182,] 2 5 3 0 #> [183,] 3 0 2 5 #> [184,] 3 0 5 2 #> [185,] 3 2 0 5 #> [186,] 3 2 5 0 #> [187,] 3 5 0 2 #> [188,] 3 5 2 0 #> [189,] 5 0 2 3 #> [190,] 5 0 3 2 #> [191,] 5 2 0 3 #> [192,] 5 2 3 0 #> [193,] 5 3 0 2 #> [194,] 5 3 2 0 #> [195,] 1 1 3 5 #> [196,] 1 1 5 3 #> [197,] 1 3 1 5 #> [198,] 1 3 5 1 #> [199,] 1 5 1 3 #> [200,] 1 5 3 1 #> [201,] 3 1 1 5 #> [202,] 3 1 5 1 #> [203,] 3 5 1 1 #> [204,] 5 1 1 3 #> [205,] 5 1 3 1 #> [206,] 5 3 1 1 #> [207,] 1 2 2 5 #> [208,] 1 2 5 2 #> [209,] 1 5 2 2 #> [210,] 2 1 2 5 #> [211,] 2 1 5 2 #> [212,] 2 2 1 5 #> [213,] 2 2 5 1 #> [214,] 2 5 1 2 #> [215,] 2 5 2 1 #> [216,] 5 1 2 2 #> [217,] 5 2 1 2 #> [218,] 5 2 2 1 #> [219,] 0 2 4 4 #> [220,] 0 4 2 4 #> [221,] 0 4 4 2 #> [222,] 2 0 4 4 #> [223,] 2 4 0 4 #> [224,] 2 4 4 0 #> [225,] 4 0 2 4 #> [226,] 4 0 4 2 #> [227,] 4 2 0 4 #> [228,] 4 2 4 0 #> [229,] 4 4 0 2 #> [230,] 4 4 2 0 #> [231,] 1 1 4 4 #> [232,] 1 4 1 4 #> [233,] 1 4 4 1 #> [234,] 4 1 1 4 #> [235,] 4 1 4 1 #> [236,] 4 4 1 1 #> [237,] 0 3 3 4 #> [238,] 0 3 4 3 #> [239,] 0 4 3 3 #> [240,] 3 0 3 4 #> [241,] 3 0 4 3 #> [242,] 3 3 0 4 #> [243,] 3 3 4 0 #> [244,] 3 4 0 3 #> [245,] 3 4 3 0 #> [246,] 4 0 3 3 #> [247,] 4 3 0 3 #> [248,] 4 3 3 0 #> [249,] 1 2 3 4 #> [250,] 1 2 4 3 #> [251,] 1 3 2 4 #> [252,] 1 3 4 2 #> [253,] 1 4 2 3 #> [254,] 1 4 3 2 #> [255,] 2 1 3 4 #> [256,] 2 1 4 3 #> [257,] 2 3 1 4 #> [258,] 2 3 4 1 #> [259,] 2 4 1 3 #> [260,] 2 4 3 1 #> [261,] 3 1 2 4 #> [262,] 3 1 4 2 #> [263,] 3 2 1 4 #> [264,] 3 2 4 1 #> [265,] 3 4 1 2 #> [266,] 3 4 2 1 #> [267,] 4 1 2 3 #> [268,] 4 1 3 2 #> [269,] 4 2 1 3 #> [270,] 4 2 3 1 #> [271,] 4 3 1 2 #> [272,] 4 3 2 1 #> [273,] 2 2 2 4 #> [274,] 2 2 4 2 #> [275,] 2 4 2 2 #> [276,] 4 2 2 2 #> [277,] 1 3 3 3 #> [278,] 3 1 3 3 #> [279,] 3 3 1 3 #> [280,] 3 3 3 1 #> [281,] 2 2 3 3 #> [282,] 2 3 2 3 #> [283,] 2 3 3 2 #> [284,] 3 2 2 3 #> [285,] 3 2 3 2 #> [286,] 3 3 2 2burst(10, 4) / 10 # all possible empirical relative frequencies#> [,1] [,2] [,3] [,4] #> [1,] 0.0 0.0 0.0 1.0 #> [2,] 0.0 0.0 1.0 0.0 #> [3,] 0.0 1.0 0.0 0.0 #> [4,] 1.0 0.0 0.0 0.0 #> [5,] 0.0 0.0 0.1 0.9 #> [6,] 0.0 0.0 0.9 0.1 #> [7,] 0.0 0.1 0.0 0.9 #> [8,] 0.0 0.1 0.9 0.0 #> [9,] 0.0 0.9 0.0 0.1 #> [10,] 0.0 0.9 0.1 0.0 #> [11,] 0.1 0.0 0.0 0.9 #> [12,] 0.1 0.0 0.9 0.0 #> [13,] 0.1 0.9 0.0 0.0 #> [14,] 0.9 0.0 0.0 0.1 #> [15,] 0.9 0.0 0.1 0.0 #> [16,] 0.9 0.1 0.0 0.0 #> [17,] 0.0 0.0 0.2 0.8 #> [18,] 0.0 0.0 0.8 0.2 #> [19,] 0.0 0.2 0.0 0.8 #> [20,] 0.0 0.2 0.8 0.0 #> [21,] 0.0 0.8 0.0 0.2 #> [22,] 0.0 0.8 0.2 0.0 #> [23,] 0.2 0.0 0.0 0.8 #> [24,] 0.2 0.0 0.8 0.0 #> [25,] 0.2 0.8 0.0 0.0 #> [26,] 0.8 0.0 0.0 0.2 #> [27,] 0.8 0.0 0.2 0.0 #> [28,] 0.8 0.2 0.0 0.0 #> [29,] 0.0 0.1 0.1 0.8 #> [30,] 0.0 0.1 0.8 0.1 #> [31,] 0.0 0.8 0.1 0.1 #> [32,] 0.1 0.0 0.1 0.8 #> [33,] 0.1 0.0 0.8 0.1 #> [34,] 0.1 0.1 0.0 0.8 #> [35,] 0.1 0.1 0.8 0.0 #> [36,] 0.1 0.8 0.0 0.1 #> [37,] 0.1 0.8 0.1 0.0 #> [38,] 0.8 0.0 0.1 0.1 #> [39,] 0.8 0.1 0.0 0.1 #> [40,] 0.8 0.1 0.1 0.0 #> [41,] 0.0 0.0 0.3 0.7 #> [42,] 0.0 0.0 0.7 0.3 #> [43,] 0.0 0.3 0.0 0.7 #> [44,] 0.0 0.3 0.7 0.0 #> [45,] 0.0 0.7 0.0 0.3 #> [46,] 0.0 0.7 0.3 0.0 #> [47,] 0.3 0.0 0.0 0.7 #> [48,] 0.3 0.0 0.7 0.0 #> [49,] 0.3 0.7 0.0 0.0 #> [50,] 0.7 0.0 0.0 0.3 #> [51,] 0.7 0.0 0.3 0.0 #> [52,] 0.7 0.3 0.0 0.0 #> [53,] 0.0 0.1 0.2 0.7 #> [54,] 0.0 0.1 0.7 0.2 #> [55,] 0.0 0.2 0.1 0.7 #> [56,] 0.0 0.2 0.7 0.1 #> [57,] 0.0 0.7 0.1 0.2 #> [58,] 0.0 0.7 0.2 0.1 #> [59,] 0.1 0.0 0.2 0.7 #> [60,] 0.1 0.0 0.7 0.2 #> [61,] 0.1 0.2 0.0 0.7 #> [62,] 0.1 0.2 0.7 0.0 #> [63,] 0.1 0.7 0.0 0.2 #> [64,] 0.1 0.7 0.2 0.0 #> [65,] 0.2 0.0 0.1 0.7 #> [66,] 0.2 0.0 0.7 0.1 #> [67,] 0.2 0.1 0.0 0.7 #> [68,] 0.2 0.1 0.7 0.0 #> [69,] 0.2 0.7 0.0 0.1 #> [70,] 0.2 0.7 0.1 0.0 #> [71,] 0.7 0.0 0.1 0.2 #> [72,] 0.7 0.0 0.2 0.1 #> [73,] 0.7 0.1 0.0 0.2 #> [74,] 0.7 0.1 0.2 0.0 #> [75,] 0.7 0.2 0.0 0.1 #> [76,] 0.7 0.2 0.1 0.0 #> [77,] 0.1 0.1 0.1 0.7 #> [78,] 0.1 0.1 0.7 0.1 #> [79,] 0.1 0.7 0.1 0.1 #> [80,] 0.7 0.1 0.1 0.1 #> [81,] 0.0 0.0 0.4 0.6 #> [82,] 0.0 0.0 0.6 0.4 #> [83,] 0.0 0.4 0.0 0.6 #> [84,] 0.0 0.4 0.6 0.0 #> [85,] 0.0 0.6 0.0 0.4 #> [86,] 0.0 0.6 0.4 0.0 #> [87,] 0.4 0.0 0.0 0.6 #> [88,] 0.4 0.0 0.6 0.0 #> [89,] 0.4 0.6 0.0 0.0 #> [90,] 0.6 0.0 0.0 0.4 #> [91,] 0.6 0.0 0.4 0.0 #> [92,] 0.6 0.4 0.0 0.0 #> [93,] 0.0 0.1 0.3 0.6 #> [94,] 0.0 0.1 0.6 0.3 #> [95,] 0.0 0.3 0.1 0.6 #> [96,] 0.0 0.3 0.6 0.1 #> [97,] 0.0 0.6 0.1 0.3 #> [98,] 0.0 0.6 0.3 0.1 #> [99,] 0.1 0.0 0.3 0.6 #> [100,] 0.1 0.0 0.6 0.3 #> [101,] 0.1 0.3 0.0 0.6 #> [102,] 0.1 0.3 0.6 0.0 #> [103,] 0.1 0.6 0.0 0.3 #> [104,] 0.1 0.6 0.3 0.0 #> [105,] 0.3 0.0 0.1 0.6 #> [106,] 0.3 0.0 0.6 0.1 #> [107,] 0.3 0.1 0.0 0.6 #> [108,] 0.3 0.1 0.6 0.0 #> [109,] 0.3 0.6 0.0 0.1 #> [110,] 0.3 0.6 0.1 0.0 #> [111,] 0.6 0.0 0.1 0.3 #> [112,] 0.6 0.0 0.3 0.1 #> [113,] 0.6 0.1 0.0 0.3 #> [114,] 0.6 0.1 0.3 0.0 #> [115,] 0.6 0.3 0.0 0.1 #> [116,] 0.6 0.3 0.1 0.0 #> [117,] 0.0 0.2 0.2 0.6 #> [118,] 0.0 0.2 0.6 0.2 #> [119,] 0.0 0.6 0.2 0.2 #> [120,] 0.2 0.0 0.2 0.6 #> [121,] 0.2 0.0 0.6 0.2 #> [122,] 0.2 0.2 0.0 0.6 #> [123,] 0.2 0.2 0.6 0.0 #> [124,] 0.2 0.6 0.0 0.2 #> [125,] 0.2 0.6 0.2 0.0 #> [126,] 0.6 0.0 0.2 0.2 #> [127,] 0.6 0.2 0.0 0.2 #> [128,] 0.6 0.2 0.2 0.0 #> [129,] 0.1 0.1 0.2 0.6 #> [130,] 0.1 0.1 0.6 0.2 #> [131,] 0.1 0.2 0.1 0.6 #> [132,] 0.1 0.2 0.6 0.1 #> [133,] 0.1 0.6 0.1 0.2 #> [134,] 0.1 0.6 0.2 0.1 #> [135,] 0.2 0.1 0.1 0.6 #> [136,] 0.2 0.1 0.6 0.1 #> [137,] 0.2 0.6 0.1 0.1 #> [138,] 0.6 0.1 0.1 0.2 #> [139,] 0.6 0.1 0.2 0.1 #> [140,] 0.6 0.2 0.1 0.1 #> [141,] 0.0 0.0 0.5 0.5 #> [142,] 0.0 0.5 0.0 0.5 #> [143,] 0.0 0.5 0.5 0.0 #> [144,] 0.5 0.0 0.0 0.5 #> [145,] 0.5 0.0 0.5 0.0 #> [146,] 0.5 0.5 0.0 0.0 #> [147,] 0.0 0.1 0.4 0.5 #> [148,] 0.0 0.1 0.5 0.4 #> [149,] 0.0 0.4 0.1 0.5 #> [150,] 0.0 0.4 0.5 0.1 #> [151,] 0.0 0.5 0.1 0.4 #> [152,] 0.0 0.5 0.4 0.1 #> [153,] 0.1 0.0 0.4 0.5 #> [154,] 0.1 0.0 0.5 0.4 #> [155,] 0.1 0.4 0.0 0.5 #> [156,] 0.1 0.4 0.5 0.0 #> [157,] 0.1 0.5 0.0 0.4 #> [158,] 0.1 0.5 0.4 0.0 #> [159,] 0.4 0.0 0.1 0.5 #> [160,] 0.4 0.0 0.5 0.1 #> [161,] 0.4 0.1 0.0 0.5 #> [162,] 0.4 0.1 0.5 0.0 #> [163,] 0.4 0.5 0.0 0.1 #> [164,] 0.4 0.5 0.1 0.0 #> [165,] 0.5 0.0 0.1 0.4 #> [166,] 0.5 0.0 0.4 0.1 #> [167,] 0.5 0.1 0.0 0.4 #> [168,] 0.5 0.1 0.4 0.0 #> [169,] 0.5 0.4 0.0 0.1 #> [170,] 0.5 0.4 0.1 0.0 #> [171,] 0.0 0.2 0.3 0.5 #> [172,] 0.0 0.2 0.5 0.3 #> [173,] 0.0 0.3 0.2 0.5 #> [174,] 0.0 0.3 0.5 0.2 #> [175,] 0.0 0.5 0.2 0.3 #> [176,] 0.0 0.5 0.3 0.2 #> [177,] 0.2 0.0 0.3 0.5 #> [178,] 0.2 0.0 0.5 0.3 #> [179,] 0.2 0.3 0.0 0.5 #> [180,] 0.2 0.3 0.5 0.0 #> [181,] 0.2 0.5 0.0 0.3 #> [182,] 0.2 0.5 0.3 0.0 #> [183,] 0.3 0.0 0.2 0.5 #> [184,] 0.3 0.0 0.5 0.2 #> [185,] 0.3 0.2 0.0 0.5 #> [186,] 0.3 0.2 0.5 0.0 #> [187,] 0.3 0.5 0.0 0.2 #> [188,] 0.3 0.5 0.2 0.0 #> [189,] 0.5 0.0 0.2 0.3 #> [190,] 0.5 0.0 0.3 0.2 #> [191,] 0.5 0.2 0.0 0.3 #> [192,] 0.5 0.2 0.3 0.0 #> [193,] 0.5 0.3 0.0 0.2 #> [194,] 0.5 0.3 0.2 0.0 #> [195,] 0.1 0.1 0.3 0.5 #> [196,] 0.1 0.1 0.5 0.3 #> [197,] 0.1 0.3 0.1 0.5 #> [198,] 0.1 0.3 0.5 0.1 #> [199,] 0.1 0.5 0.1 0.3 #> [200,] 0.1 0.5 0.3 0.1 #> [201,] 0.3 0.1 0.1 0.5 #> [202,] 0.3 0.1 0.5 0.1 #> [203,] 0.3 0.5 0.1 0.1 #> [204,] 0.5 0.1 0.1 0.3 #> [205,] 0.5 0.1 0.3 0.1 #> [206,] 0.5 0.3 0.1 0.1 #> [207,] 0.1 0.2 0.2 0.5 #> [208,] 0.1 0.2 0.5 0.2 #> [209,] 0.1 0.5 0.2 0.2 #> [210,] 0.2 0.1 0.2 0.5 #> [211,] 0.2 0.1 0.5 0.2 #> [212,] 0.2 0.2 0.1 0.5 #> [213,] 0.2 0.2 0.5 0.1 #> [214,] 0.2 0.5 0.1 0.2 #> [215,] 0.2 0.5 0.2 0.1 #> [216,] 0.5 0.1 0.2 0.2 #> [217,] 0.5 0.2 0.1 0.2 #> [218,] 0.5 0.2 0.2 0.1 #> [219,] 0.0 0.2 0.4 0.4 #> [220,] 0.0 0.4 0.2 0.4 #> [221,] 0.0 0.4 0.4 0.2 #> [222,] 0.2 0.0 0.4 0.4 #> [223,] 0.2 0.4 0.0 0.4 #> [224,] 0.2 0.4 0.4 0.0 #> [225,] 0.4 0.0 0.2 0.4 #> [226,] 0.4 0.0 0.4 0.2 #> [227,] 0.4 0.2 0.0 0.4 #> [228,] 0.4 0.2 0.4 0.0 #> [229,] 0.4 0.4 0.0 0.2 #> [230,] 0.4 0.4 0.2 0.0 #> [231,] 0.1 0.1 0.4 0.4 #> [232,] 0.1 0.4 0.1 0.4 #> [233,] 0.1 0.4 0.4 0.1 #> [234,] 0.4 0.1 0.1 0.4 #> [235,] 0.4 0.1 0.4 0.1 #> [236,] 0.4 0.4 0.1 0.1 #> [237,] 0.0 0.3 0.3 0.4 #> [238,] 0.0 0.3 0.4 0.3 #> [239,] 0.0 0.4 0.3 0.3 #> [240,] 0.3 0.0 0.3 0.4 #> [241,] 0.3 0.0 0.4 0.3 #> [242,] 0.3 0.3 0.0 0.4 #> [243,] 0.3 0.3 0.4 0.0 #> [244,] 0.3 0.4 0.0 0.3 #> [245,] 0.3 0.4 0.3 0.0 #> [246,] 0.4 0.0 0.3 0.3 #> [247,] 0.4 0.3 0.0 0.3 #> [248,] 0.4 0.3 0.3 0.0 #> [249,] 0.1 0.2 0.3 0.4 #> [250,] 0.1 0.2 0.4 0.3 #> [251,] 0.1 0.3 0.2 0.4 #> [252,] 0.1 0.3 0.4 0.2 #> [253,] 0.1 0.4 0.2 0.3 #> [254,] 0.1 0.4 0.3 0.2 #> [255,] 0.2 0.1 0.3 0.4 #> [256,] 0.2 0.1 0.4 0.3 #> [257,] 0.2 0.3 0.1 0.4 #> [258,] 0.2 0.3 0.4 0.1 #> [259,] 0.2 0.4 0.1 0.3 #> [260,] 0.2 0.4 0.3 0.1 #> [261,] 0.3 0.1 0.2 0.4 #> [262,] 0.3 0.1 0.4 0.2 #> [263,] 0.3 0.2 0.1 0.4 #> [264,] 0.3 0.2 0.4 0.1 #> [265,] 0.3 0.4 0.1 0.2 #> [266,] 0.3 0.4 0.2 0.1 #> [267,] 0.4 0.1 0.2 0.3 #> [268,] 0.4 0.1 0.3 0.2 #> [269,] 0.4 0.2 0.1 0.3 #> [270,] 0.4 0.2 0.3 0.1 #> [271,] 0.4 0.3 0.1 0.2 #> [272,] 0.4 0.3 0.2 0.1 #> [273,] 0.2 0.2 0.2 0.4 #> [274,] 0.2 0.2 0.4 0.2 #> [275,] 0.2 0.4 0.2 0.2 #> [276,] 0.4 0.2 0.2 0.2 #> [277,] 0.1 0.3 0.3 0.3 #> [278,] 0.3 0.1 0.3 0.3 #> [279,] 0.3 0.3 0.1 0.3 #> [280,] 0.3 0.3 0.3 0.1 #> [281,] 0.2 0.2 0.3 0.3 #> [282,] 0.2 0.3 0.2 0.3 #> [283,] 0.2 0.3 0.3 0.2 #> [284,] 0.3 0.2 0.2 0.3 #> [285,] 0.3 0.2 0.3 0.2 #> [286,] 0.3 0.3 0.2 0.2